

Progress of power and He exhaust simulation study for JA DEMO

Nobuyuki Asakura¹, K. Hoshino², Y. Homma³, Y. Sakamoto³, and Joint Special Design Team for Fusion DEMO

- 1) National Institutes for Quantum and Radiological Science and Technology (QST), Naka
- 2) Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama
- 3) QST, Rokkasho

JA-US Workshop on Fusion Reactor Design and Critical Issues of Fusion Engineering (remote), 28-30 March 2022

1. Introduction:

Power exhaust concept
SONIC development
Divertor simulation for JA DEMO

2. Power exhaust for JA DEMO (higher-κ case):

Divertor detachment Influences of ion transport and diffusion coefficient

3. Divertor operation in low density

- 4. He exhaust study in Plasma edge and Divertor
- 5. Summary: Simulation of JA DEMO divertor performance

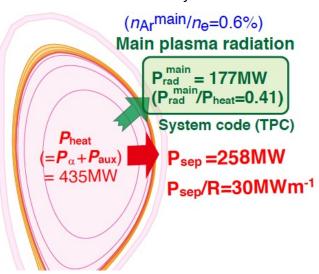
1. JA-DEMO design and power exhaust concept Large power exhaust: $P_{sep}/R = 30-35$ MW/m, is required

Power exhaust concept of primary JA-DEMO design (JA-DEMO 2014)[1,2]:

System code predicted *Greenwald density* (n^{GW}: 0.67x10²⁰m⁻³) is lower than ITER

 \Rightarrow Impurity seeding is restricted up to $n_{\rm Ar}/n_{\rm e}$ = 0.25% due to fuel dilution: to obtain Fusion power ($P_{\rm fusion}$ = 1.5GW) and Net electricity output ($P_{\rm e-net}$ ~0.25GW), and $\beta_{\rm N}$ (3.5) and Bootstrap-fraction (0.6) with relatively high HH_{98y2} (~1.3).

Revised proposal (JA-DEMO higher- κ)[3]: κ_{95} is increased from 1.65 to 1.75 for the same R_p , a_p , B_t and q_{eff} , which increases I_p (12.3 \Rightarrow 13.5MA) and n_{GW} (0.67 \Rightarrow 0.73x10²⁰). $\Rightarrow n_{Ar}/n_e$ and Radiation loss fraction ($f_{rad}^{main} = P_{rad}^{main}/P_{heat}$) are increased.


JA-DEMO 2014 B_t =5.9T, R/a=8.5/2.42m

 I_p =12.3MA, κ_{95} =1.65, q_{95} =4.1, P_{fusion} ~1.5GW

 $(n_{Ar}^{main}/n_{e}=0.25\%)$ Main plasma radiation $P_{rad}^{main} = 82MW$ $(P_{rad}^{main}/P_{heat}=0.22)$ System code (TPC) $P_{sep} = 294MW$ $P_{sep}/R = 35MWm^{-1}$

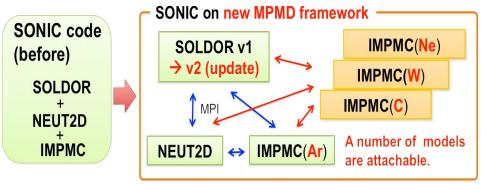
JA-DEMO higher-κ proposal

 I_p =13.5MA, κ_{95} =1.75, P_{fusion} ~1.7GW

[1]Sakamoto, et al. IAEA FEC 2014,

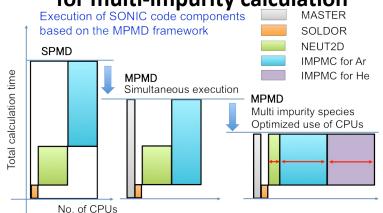
[2]Tobita, et al. Fusion Sci. Technol. 72 (2018) 537

[3] Asakura, et al. Nucl. Fusion 57 (2017) 126050



Development of SONIC V4 and recent progresses

-A-


- Modeling framework using MPMD (Multiple-Program Multiple-Data) approach and MPI (Message Passing Interface) data exchange scheme has been developed for
- (1) Each code can be independently developed, added and replaced.
- (2) Improved numerical efficiency: e.g. number of CPUs used for each code can be arbitrarily adjusted to optimize performance.
- ⇒ Power and particle exhaust of DEMO divertor, consistent with Ar and He transports, has been recently simulated. Introduction of drifts (SOLDOR v2) is considered.

(1) Restructured SONIC code with MPMD framework

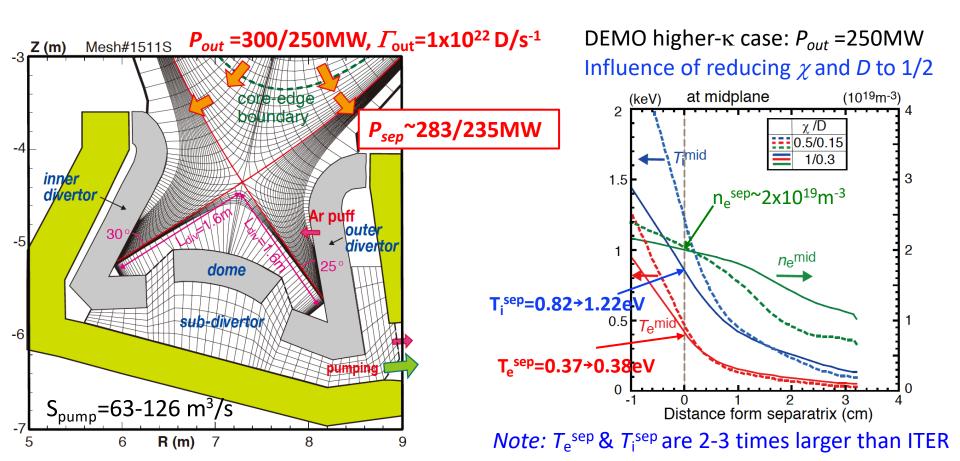
Each code can be independently developed.

(2) Improved numerical efficiency for multi-impurity calculation

Recent progresses of modelling to evaluate influences under the DEMO condition:

- Kinetic models (thermal force on impurity transport and flux limiter for ion conduction) for low collisionality SOL in DEMO were developed [4, 5].
- Elastic collision model of D-D, D-D2, D2-D2, D-He was incorporated, and during improvement[6]
- Self-consistent photon transport simulation was performed for SlimCS [7] and JA DEMO.
 - [4] Y. Homma, et al, Nucl. Fus.60 (2020) 046031, [5] Y. Homma, et al, Nucl. Fus.62 (2022) 045020.
 - [6] K. Hoshino, et al., PET-18 (2021) [7] K. Hoshino, et al., Contrib. Plasma Phys., 56 (2016) 657.

Divertor simulation for JA DEMO

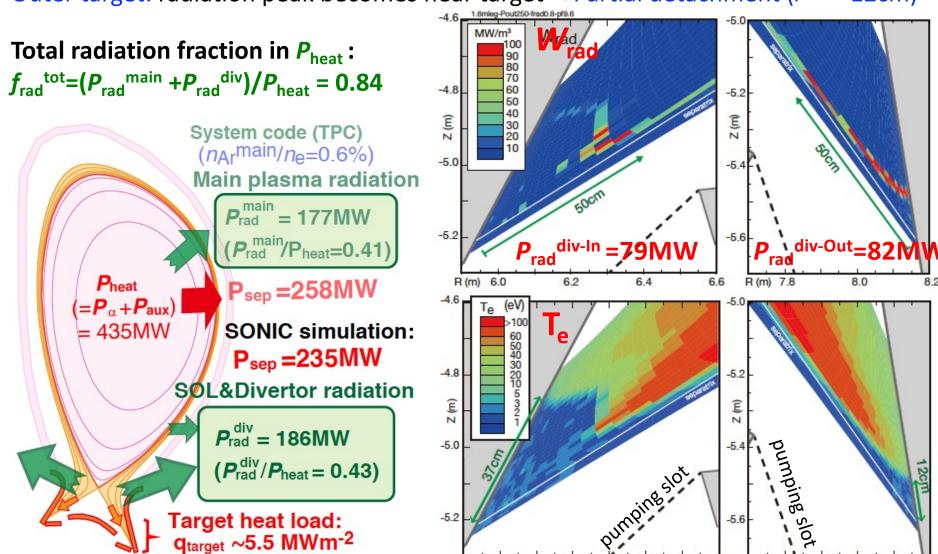

-5-

Divertor leg length: L_{div} =1.6m is proposed (x1.6 longer than ITER)

- • P_{out} = 300 MW(DEMO 2014), 250MW(DEMO higher-κ) at core-edge boundary(r/a=0.95)
- •SOL width 3.2 cm: covering connecting SOL between inner and outer divertors.

Operation window for $q_{\text{target}} \leq 10 \text{ MWm}^{-2}$ is determined in severe power exhaust params.:

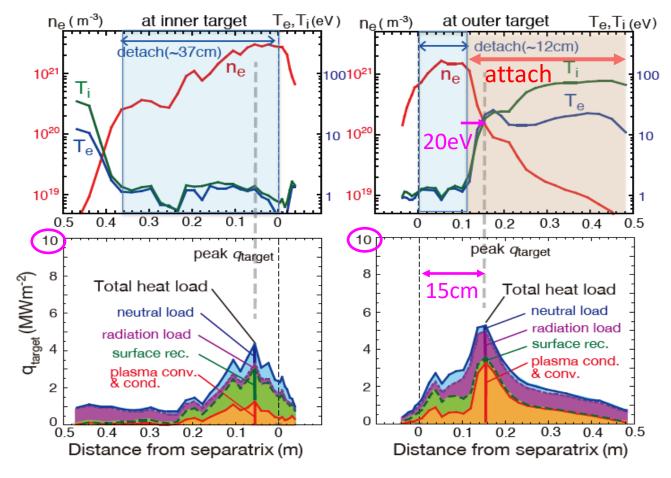
- (1) Total $P_{\text{rad}}/P_{\text{out}}$ is reduced from 0.8 $(f^*_{\text{rad}}^{\text{div}} = P_{\text{rad}}^{\text{div}}/P_{\text{sep}} \sim 0.78)$ to 0.7 $(f^*_{\text{rad}}^{\text{div}} \sim 0.68)$.
- (2) Diffusion coefficients are reduced from $\chi=1\text{m}^2/\text{s}$ & $D=0.3\text{m}^2/\text{s}$ to half values.



2. Power exhaust for JA DEMO higher-κ case [3]

Divertor radiation in $P_{\text{sep}}^{235}MW: f_{\text{rad}}^{*}div = P_{\text{rad}}^{div} / P_{\text{sep}} = 0.78$

Inner target: radiation peak far above target \Rightarrow Full detachment ($T_{e.i}^{div}$ 1eV in all r^{div}) Outer target: radiation peak becomes near target \Rightarrow Partial detachment ($r^{div} < 12$ cm)

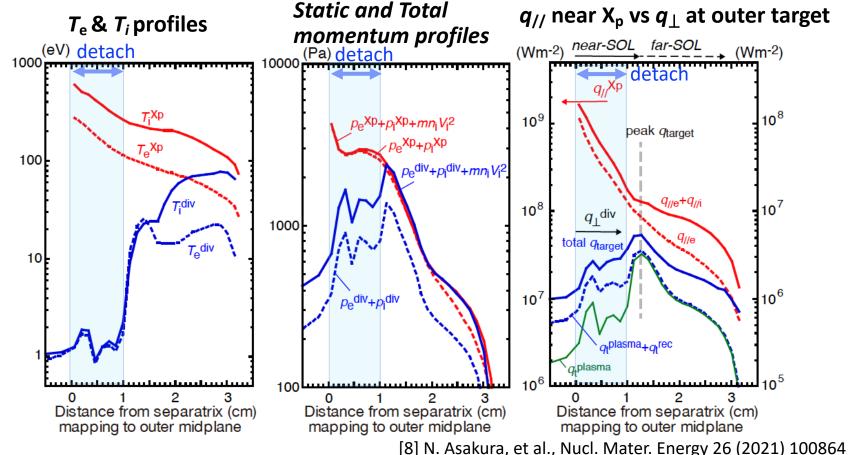

Detachment is produced: q_{target} is less than 10 MWm⁻² Outer peak- q_{target} appears in "partially attached" region

Inner target: peak q_{target} ~4 MWm⁻², where ionization still occurs at $T_{\text{e}}^{\text{div}} = T_i^{\text{div}} \sim 1 \text{ eV}$.

⇒ Surface recombination is a dominant Volume-recombination is not significant. Significant reduction in ion flux (seen in experiments) is *not* simulated.

Outer target: peak $q_{\text{target}} \sim 5 \text{ MWm}^{-2}$ is seen at "attached" region ($r^{\text{div}} \sim 15 \text{cm}$).

⇒ Plasma heat load is dominant, and Radiation load is also large.

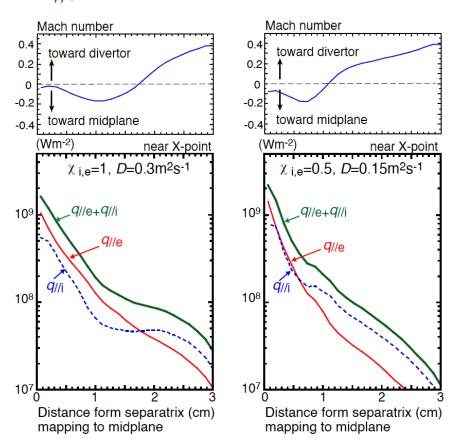


SOL heat flux and Target heat load mapping to r^{mid} Large q_{II}^{Xp} near the separatrix is reduced in partial detachment

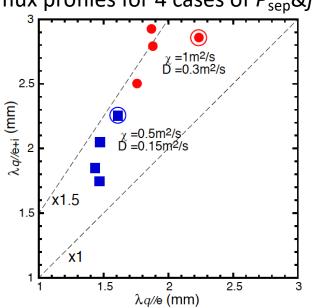
- Detachment (T_e^{div} , T_i^{div} =1-2 eV) is produced near separatrix; $r^{mid} \le 1 \text{cm}$ ($r^{\text{div}} \le 12 \text{cm}$).
- Reduction of total plasma pressure $(p_e^{\text{div}} + p_i^{\text{div}} + m_i n_i v_{i/l}^2)$ is not significant (~1/2).
- Large $q_{//}^{Xp}$ in "near-SOL" (short $\lambda_{q//i+e}^{mid}$ = 2.9 mm) is significantly reduced at the target \Rightarrow peak q_{target} is produced in "far-SOL" region.

JA DEMO higher- κ with $f^*_{rad}^{div}$ 0.8:

Effects of ion transport and diffusion coefficient on q_{II} profile


Flow (ion convection) reversal is seen in "near-SOL", which is produced above target

 \Rightarrow "shoulder" is formed in Ion heat flux profile: $\lambda_{q//i+e}$ in "near-SOL" is larger than $\lambda_{q//e}$


JA DEMO: $T_e^{\text{sep}} \& T_i^{\text{sep}}$ are 2-3 times larger than ITER

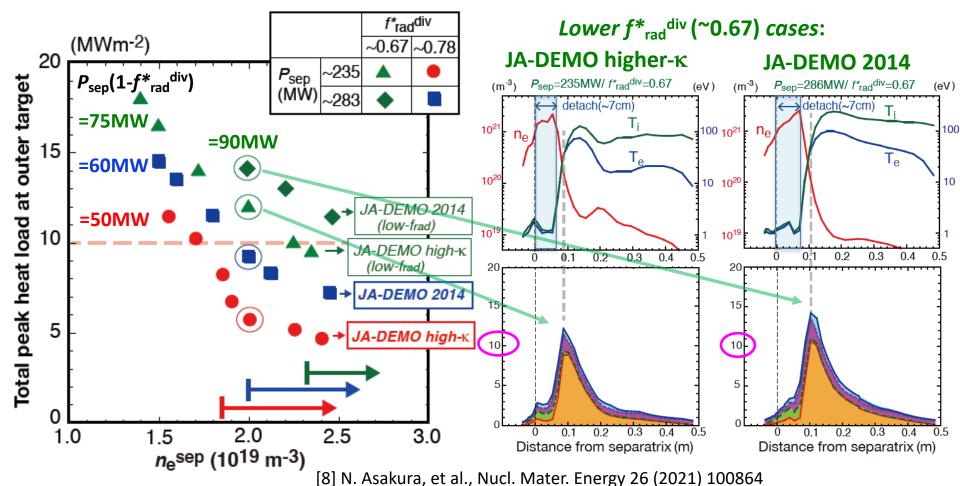
 \Rightarrow $\lambda_{q//e}$ =2.2, $\lambda_{q//e+i}$ =2.9 mm for standard ITER χ/D =1/0.3 m²s⁻¹: $\lambda_{q//e}$ = 3.4 mm in ITER[9]. Reducing to half values (χ/D = 0.5/0.15 m²s⁻¹) \Rightarrow $\lambda_{q//e}$ & $\lambda_{q//e+i}$ are reduced to 1.6, 2.3 mm.

DEMO $q_{//e+i}$ profiles are still wider than Eich's scaling[10] (~1mm) & GS model[11] (~1.4mm).

"near-SOL" e-folding lengths of el. & total heat flux profiles for 4 cases of $P_{\text{sep}} \& f^*_{\text{rad}}^{\text{div}}$

[9] Kukushkin, et al. J. Nucl. Mater. (2013). [10] Eich, et al. Nucl. Fusion (2013).

[11] R. Goldston, Nucl. Fusion (2012).

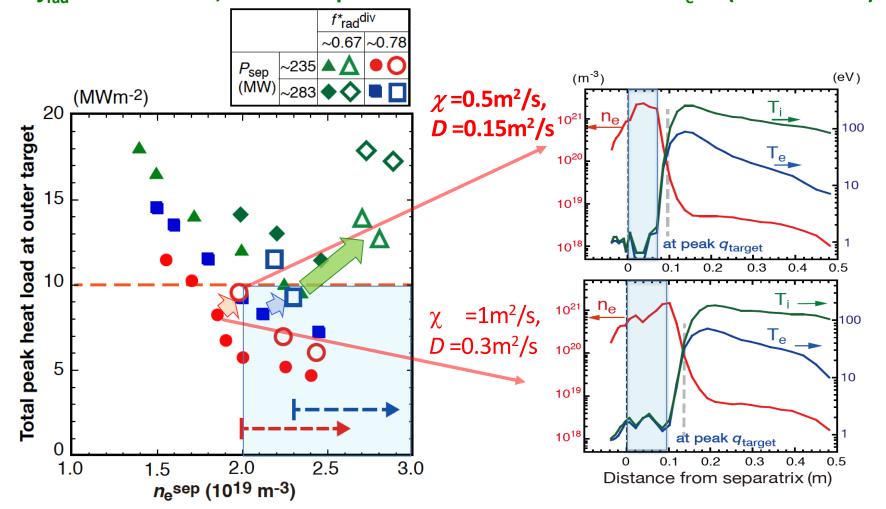


3. Divertor operation in low density $(n_e^{\text{sep}} \sim 1/3 - 1/2 * n^{\text{GW}})$ q_{target} is reduced ($\leq 10 \text{MWm}^{-2}$) in Both reference cases (f^*_{rad} div~0.78)

Higher- κ case can furthermore reduce peak- q_{target} and allow enough operation margin.

Lower $f^*_{rad}^{div}$ ~0.67 (P_{sep} ~235 and 283 MW) cases:

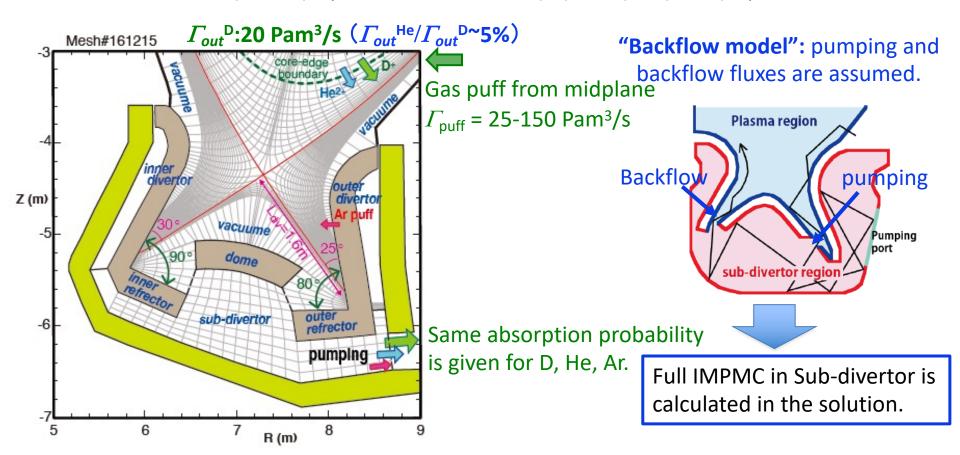
<u>narrower detachment</u>, and increasing T_i^{div} , T_e^{div} at attached region \Rightarrow increasing q_{target} : higher $n_e^{\text{sep}} > 2.3 \times 10^{19} \text{m}^{-3}$ (DEMO higher- κ) or $> 2.6 \times 10^{19} \text{m}^{-3}$ (DEMO 2014) is required.



Divertor operation: smaller diffusion coefficients -11Influences of χ and D become large for *lower* radiation fraction

Peak- q_{target} for DEMO higher- κ and DEMO 2014 cases (f_{rad}^{*} ~0.78):

- Detachment region is reduced from 10 to 7 cm, and T_i^{div} , T_e^{div} at attached region increased \Rightarrow peak- q_{target} is increased, but acceptable for higher- κ , DEMO 2014: $n_e^{\text{sep}} > 2.3 \times 10^{19} \,\text{m}^{-3}$.
- For low $f_{\rm rad}^{\rm div}$ ~0.67 cases, divertor operation is difficult in the Low $n_{\rm e}^{\rm sep}$ (2-3x10¹⁹ m⁻³).



4. He exhaust study in Plasma edge and Divertor He ion flux equivalent to P_{fusion} : 1.5GW is exhausted from *core-edge*

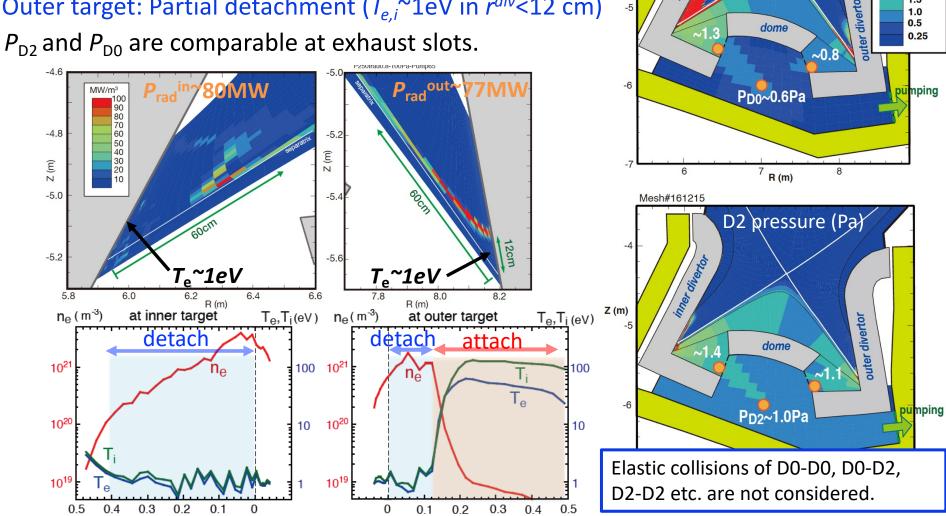
Simulation parameters for He exhaust study:

- He flux ($\Gamma_{\text{out}}^{\text{He}=5.3\times10^{20}\,\text{s}^{-1}$) is exhausted, corresponding to $P_{fusion}=1.5\,\text{GW}$ ($\Gamma_{\text{out}}^{\text{D}=1\times10^{22}\,\text{s}^{-1}}$).
- Diffusion coefficient (D_i , $D_{imp} = 0.3$ m²/s) is the same for D, He and Ar (the same as ITER calc.).
- Full MC cal. of He and Ar including Sub-divertor is performed <u>once in every 10 IMPMC runs</u>, and the pump and backflow fluxes are assumed in following 9 runs: "Backflow model".

Note: reflector was (2019-) opened from 60° to (in)90°/(out)80° (n-protection)

Plasma detachment and D⁰/D₂ pressure in divertor

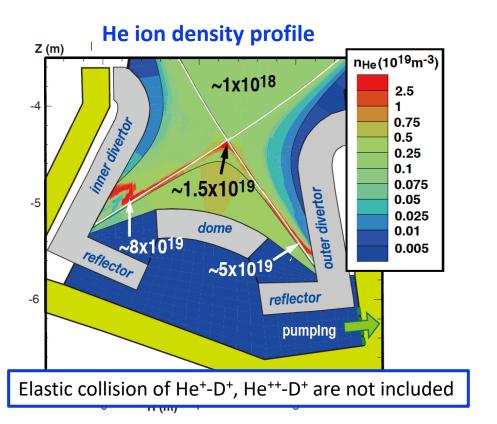
Wider reflector angle: plasma detachment and neutral pressure were similar

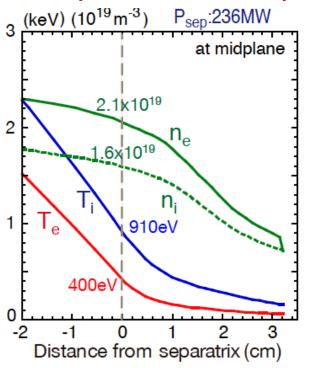

P_{D0}&P_{D2} (Pa)

DO pressure (Pa)

Gas puff $5.3x10^{22}$ D/s and Ar seeding: $3.9x10^{20}$ Ar/s, $f_{\text{rad}}^{\text{div}} = 0.78$ (He radiation loss is small fraction: 0.04)

Inner target: Full detachment ($T_{e,i}$ ~1eV)


Outer target: Partial detachment $(T_{e,i}^{2})^{2}$ 1eV in r^{div} <12 cm)

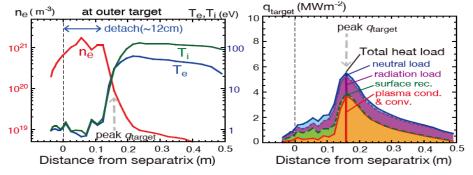


He ion density in divertor and plasma edge

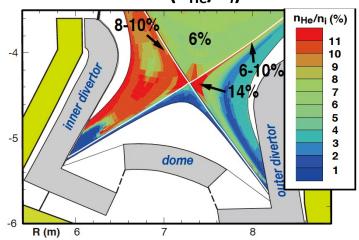
- He ion density (n_{He}) is significantly increased near the detachment front (between Ar radiation peak and D ionization front) due to recycling in the divertor.
- n_{He} is increased also near X-point (similar to D+ density).
- n_{He} ~1x10¹⁸ m⁻³ inside the separatrix (r^{mid}/a =0.96-0.98): n_e^{mid} is 25% larger than n_i^{mid} due to Ar and He ions (similar contributions to Δn_e^{mid}).

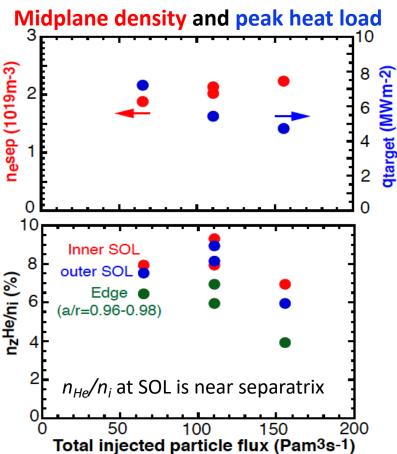
Plasma profiles at outer midplane

He concentration in detached divertor


 C_{He}^{edge} = 4-7% similar to exhausting Γ_{He}/Γ_D : Accumulation of He is NOT seen.

With increasing gas puff rate, detachment width increases and peak q_{target} is reduced. He concentrations at SOL and plasma edge $(C_{He} = n_{He}/n_i)$:


- In-out asymmetry of C_{He} in SOL/divertor is 2-3 times, but decreasing near separatrix.
- $C_{He} = 4-7\%$ at plasma edge (smaller than SOL) \Rightarrow Accumulation of He is NOT seen.


Note: χ and D were reduced to half values \Rightarrow C_{He} at plasma edge is increased to 7-9%.

Profiles of plasma and heat load at outer target:

He concentration (n_{He}/n_i) in divertor

5. Summary: Simulation of JA DEMO divertor performance

-16-

Heat load and plasma detachment in a long-leg divertor (L_{leg} =1.6m) were evaluated for JA-DEMO 2014 and higher-κ (P_{sep} = 283/235 MW) in the low SOL n_e^{sep} = 2-3x10¹⁹m⁻³.

Divertor operation (\leq 10 MWm⁻²) was determined with reducing $f^*_{rad}^{div}$ or/and $\chi \& D$;

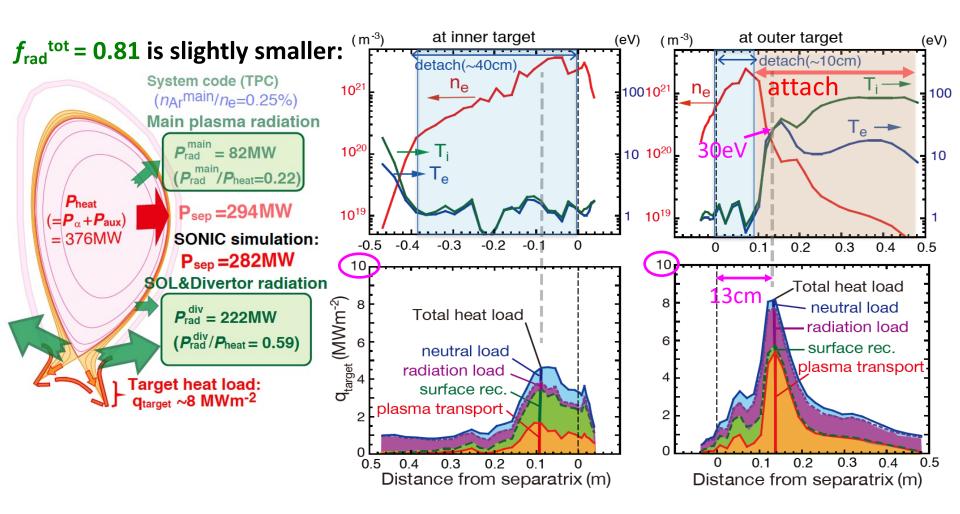
- Peak- q_{target} at partially detached outer divertor was increased with decreasing detachment width and increasing peak- T_e^{div} and T_i^{div} at the attached region.
- Two references ($f^*_{rad}^{div}$ ~0.78) was acceptable; higher- κ case allows larger operation margin.
- Severe cases of reducing f_{rad}^* to 0.67 or/and χ & D to half values; higher n_e^{sep} was required. Particularly, impact of reducing χ and f_{rad}^* was serious.

He exhaust for JA-DEMO (higher-κ) was simulated;

He densities in the divertor and edge were evaluated with enhancing the detachment.

- With increasing detachment width by increasing gas puff rate (but same $f_{\rm rad}^{\rm div}$ 0.8), accumulation of He ion was not seen in the plasma edge: $(n_{\rm He}/n_{\rm i})^{\rm edge}$ 4-7%.
- For the case with improving confinement, $(n_{\rm He}/n_i)^{\rm edge}$ to 7-9% is still acceptable.

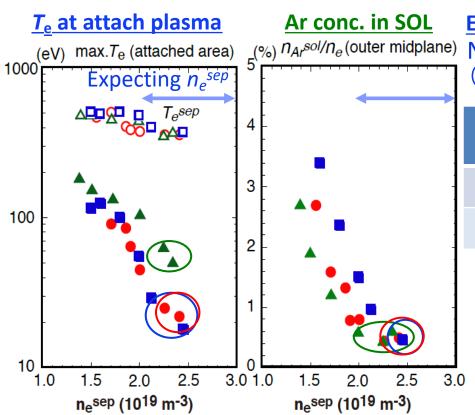
Some other activities:


- Benchmark of SONIC and SOLPS-ITER codes both for EU- and JA-DEMOs (in BA-DDA).
- Integration of transport codes, SONIC and TOPICS (main plasma), is in progress.
- Renewing SOLDOR to incorporate drifts is considered; now debugging in slab-model.

Power exhaust for DEMO 2014:

peak- q_{target} and $T_{\text{e,i}}^{\text{div}}$ increased with reducing detachment region

Divertor radiation fraction is the same: $f^*_{rad}^{div} = P_{rad}^{div} / P_{sep} = 0.78$, where P_{sep} is larger. Outer target: T_e^{div} and T_i^{div} become larger (~30eV) in the attached region (r^{div} ~13cm) \Rightarrow peak q_{target} ~8 MWm⁻² and become closer to separatrix.



Other issues: Reduction in T_e^{div} and T_i^{div} at attached area is required such as "pronounced detachment: AUG"[12]

<u>Partially detachment for both ref. cases</u>: Low $T_e^{\text{div}} = 20\text{-}30 \text{ eV}$ is expected in low $n_e^{\text{sep}} \Rightarrow \text{Evaluation of net-erosion rate and improvement of its accuracy are required.}$ For the low $f_{\text{rad}}^{\text{div}}$ case, decreasing detachment width, and reduction in T_e^{div} is small. Exp. data and Modeling of erosion & transport (finite-Larmor effect[13]) must be improved.

<u>Impurity concentration in SOL</u> ($c_{Ar}^{SOL} = n_{Ar}^{SOL} / n_e^{SOL}$): Increasing P_{rad}^{div} and Controlling core dilution are required $\Rightarrow c_{Ar}^{SOL} (0.4-0.6\%)$ is comparable to c_{Ar}^{main} in system code.

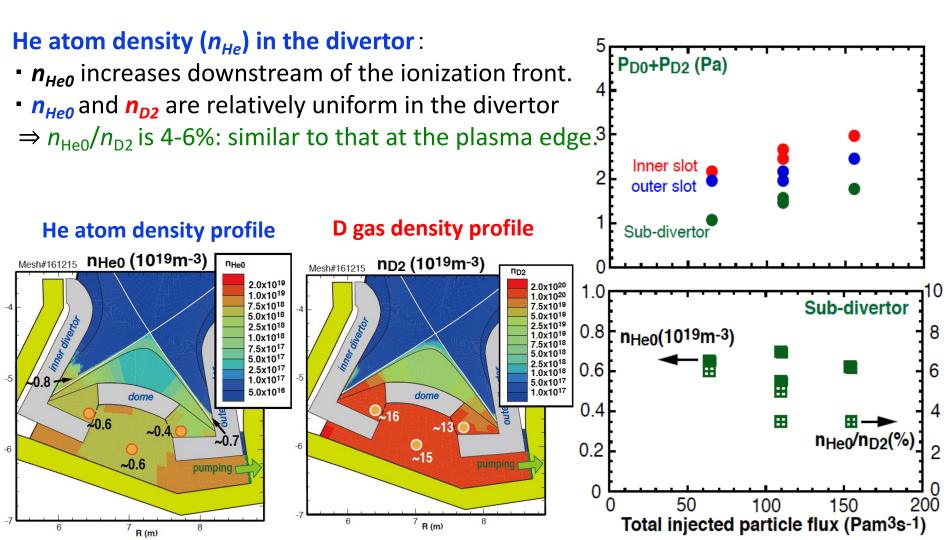
Ar conc. in SOL Estimation of net-erosion with 90% re-deposition Net erosion ($\triangle d$) becomes a half of W-width (d:5mm), if $T_e^{\text{div}} \sim 20 \text{eV}$ at attached area.

Net erosion/yr(mm)	T _e =5eV	10eV	20eV
DEMO (steady state)	0.15	1	2.5
ITER(400s,2000shot)	0.004	0.026	0.064

attach plasma $\Gamma_i \sim 10^{23} \,\mathrm{m}^{-2} \mathrm{s}^{-1}$, $\sim 20 \,\mathrm{eV} < Z > = 4$, $n_{Ar}/n_i = 0.2\%$, assuming net erosion: $R_{\mathrm{net}} = 0.1$ Sputtering yield with Ar $Y_i C_i \sim 4 \times 10^{-4}$ (at 20 eV) [13]

 $\Delta d \text{ (mm)} = 4.95 \times 10^{-19} R_{\text{net}} * Y_i C_i * \Gamma_i * t \text{ (year)}$

[12] A. Kallenbach, et al., J. Nucl. Mat. (2011). [13] Y. Homma, et al., Nucl. Mater. Energy. (2017).



Distribution of He atom density in detachment

 $n_{\rm He0}/n_{\rm D2}$ in the divertor is also 4-6%, similar to that at plasma edge

-16-

Neutral pressure (P_{D2}+P_{D0}) in the divertor is increased with gas puff rate.
 Note: for large throughput cases, exhaust flux is smaller than total injected D flux.

