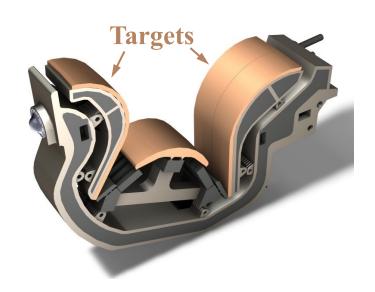
GAS COOLING OF DIVERTORS

Minami Yoda

S. I. Abdel-Khalik, M. L. Lanahan, D. S. Lee, S. A. Musa

Georgia Tech College of Engineering


George W. Woodruff School of Mechanical Engineering

March 28, 2022

INTRODUCTION

Power handling/exhaust in plasma-material interactions (PMI)

- Divertor configuration: confine core plasma with poloidal magnetic field
 - Exhaust ~20% of energy onto divertor targets (plasma-facing components, or PFC) near X-point(s)
 - Targets remove plasma impurities and fusion products from scrape-off layer,
 converting kinetic energy to heat ⇒ subject to extremely high heat fluxes
- ITER divertor specifications
 - Steady-state heat fluxes $q'' = 10 \text{ MW/m}^2$
 - "Slow transients": $q'' = 20 \text{ MW/m}^2 \text{ over } 10 \text{ s}$
- Lower (< 2 MW/m²) heat load on first wall
- Actual divertor (and first wall) heat load specifications TBD
- Candidate coolants for long-pulse reactors: He, water (DEMO), liquid metals

GEORGIA TECH STUDIES

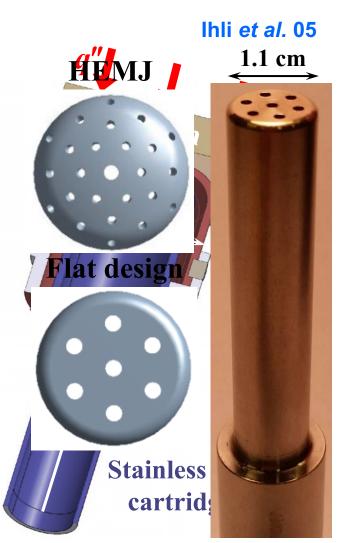
Aim: evaluate thermo-fluids performance of gas-cooled solid-tungsten (W) divertors

- Experiments complemented by numerical simulations
 - Tests in He loop on stainless + WL10 test sections: consider pressure boundary (*vs.* W PFC/tile) at prototypical pressures, nearly prototypical temperatures and heat fluxes
 - Measure cooled surface temperatures T_s , pressure drops Δp , and incident heat flux q'' (from He energy balance) over a range of He mass flowrates \dot{m}
 - Dimensionless heat transfer coefficient, Nusselt number Nu, from (T_s, q'') : correlations for Nu(Re) [Reynolds number Re dimensionless \dot{m}]
 - Dimensionless pressure loss coefficient K_L from Δp : correlations for $K_L(Re)$
 - Experimental data validate numerical models in commercial CFD software (ANSYS Workbench)
 - Develop performance curves for maximum heat flux on target plates

OVERVIEW

Updates on current research

- "Flat design" finger-type divertor update
 - Revised pressure loss coefficients $K_{\rm L}$
- **■** CO₂, vs. He, cooled divertors
 - Thermo-fluids performance of finger-type (= "HEMJ minus the HE") divertors
- Helium-cooled flat plate (HCFP) experiments
 - "Short" HCFP test section in small ($\dot{m} \le 10 \text{ g/s}$) GT He loop


FINGER-TYPE DIVERTORS

Helium-cooled multijet (HEMJ) divertor

- 25 (24 \varnothing 0.6 mm + 1 \varnothing 1.04 mm) impinging jets of (600 °C, 10 MPa) He cool curved inner surface of PFC across H = 0.9 mm gap
- $\dot{m} = 6.8 \text{ g/s}$; tile area $\approx 2.8 \text{ cm}^2$

Task 1 of PHENIX: optimize cooling

- Developed "flat" design to simplify HEMJ: $7 (\emptyset 1.18 \text{ mm})$ impinging jets cool flat inner surface across H = 1.25 mm gap Zhao et al. 17
- Experiments in small GT He loop
 - Incident heat fluxes q'' ≤ 7.1 MW/m²
 - He conditions at inlet: $T_i \le 400$ °C, $p_i \approx 10$ MPa
 - Reynolds number $Re \le 5.4 \times 10^4$ (vs. prototypical $Re_p = 2.2 \times 10^4$)

FLAT DESIGN PARAMETERS

Reynolds number Re dimensionless He mass flow rate

- Jet diameter $D_i = 1.18$ mm; jets area $A_j = 766.4$ mm²
- Prototypical $Re_p = 2.2 \times 10^4$

$$Re = \frac{4}{\pi} \frac{\dot{m}D_{j}}{\mu(T_{i})A_{j}}$$

Average heat transfer coefficient (HTC) h

- Heat flux q'' from He energy balance
- \overline{c}_p = specific heat evaluated at $(T_o + T_i)/2$
- Area of heated, cooled surfaces $A_h = 227 \text{ mm}^2$, $A_c = 154 \text{ mm}^2$
- \bar{T}_{c} average cooled surface temperature

$$q'' = \dot{m}\overline{c}_{p}(T_{o} - T_{i}) / A_{h}$$

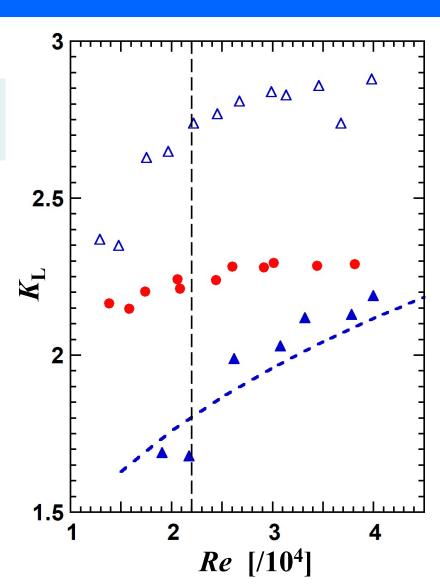
$$h = \frac{q'' A_{\rm h}}{(\overline{T_{\rm c}} - T_{\rm i}) A_{\rm c}}$$

$$Nu = \frac{hD_{\rm j}}{\overline{k}}$$

■ Nusselt number Nu dimensionless HTC

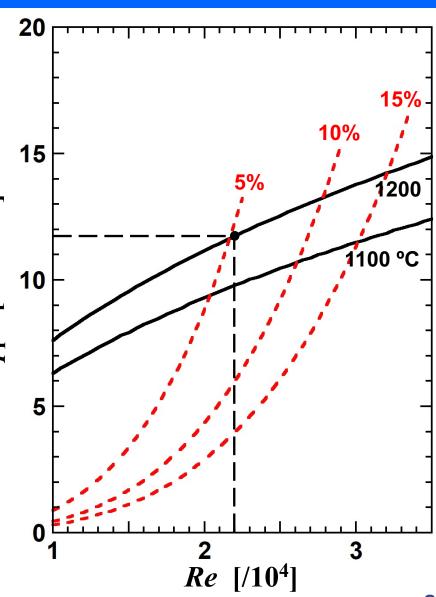
- \bar{k} = He thermal conductivity evaluated at $(T_o + T_i)/2$
- Develop correlation assuming power law for Nu(Re) since test section uses actual divertor materials

UPDATED PRESSURE DROPS


- Pressure loss coefficient $K_{\rm L}$ dimensionless Δp
 - \overline{V} average speed

$$K_{\rm L} = \frac{\Delta p}{\rho \bar{V}^2 / 2}$$

- Flat design results
 - Original $K_{\rm L}$ (\bullet)

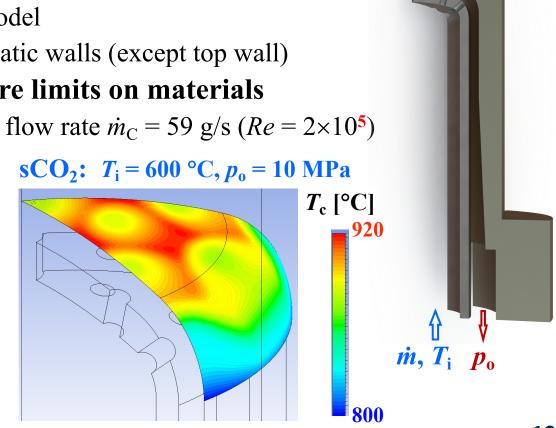

Zhao et al. 18

- Initial tests with new test section gave much higher $K_{\rm L}$ (\triangle) Lee et al. 21
- Tests with new manifold (and same test section) give lower K_L (\triangle): at Re_p , $K_L = 1.7$, vs. 2.3 for HEMJ
- Correlation: $K_{\rm L} = 0.125 Re^{0.267}$ (---)
- Extrapolate Nu, K_L correlations to prototypical conditions
 - $Nu = 0.145 Re^{0.685}$ $T_i \ge 300 \, ^{\circ}\text{C}$

PERFORMANCE CURVES

- Estimate maximum incident heat flux on tile q_T'' ($A_T = 281 \text{ mm}^2$) removed at prototypical conditions: $T_i = 600 \text{ °C}, p \approx 10 \text{ MPa}$
 - Average pressure boundary temperature (based on 1D conduction)
 T_s = 1100 °C, 1200 °C
 - Helium pumping power (as fraction of thermal power) $\beta = 5\%$, 10%, 15%
 - At $Re_p = 2.2 \times 10^4$: $q_T^{\prime\prime} = 11.7 \text{ MW/m}^2$, $\beta \approx 5\%$
- Based on updated K_L results, flat design and HEMJ have similar thermal-fluids performance

OTHER GASEOUS COOLANTS

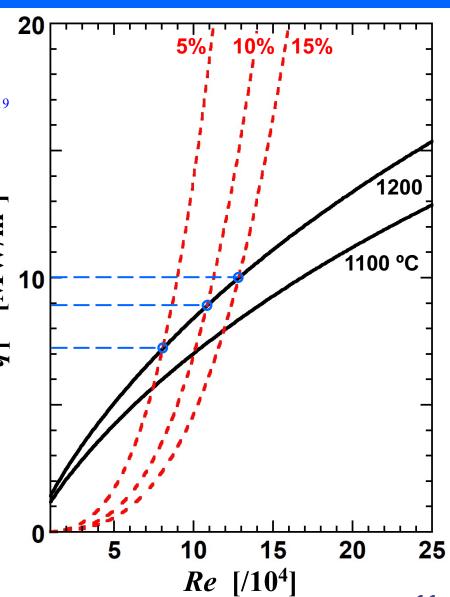

Objective: evaluate supercritical carbon dioxide (sCO₂) vs. He as a divertor coolant

- Fission reactors have used two gaseous coolants: He and CO₂
 - CO₂ coolant for Magnox (1950s), Gen II AGRs (1970s)
 - AGRs: dissociation of CO_2 into CO and O_2 (especially at higher temperatures > 600 °C) results in oxidation of graphite, metals
- Focus on supercritical CO₂: critical point (7.38 MPa, 31 °C)
 - High densities \Rightarrow compact, high efficiency power cycles
 - Evaluation of various sCO₂ power cycles using heat from DEMO Stepanek et al. 20
 - Evaluate thermo-fluids performance of sCO₂ as (last?) part of the FESS Next Study
 - Nu, $K_L \Rightarrow$ estimate maximum heat flux and pumping power under prototypical conditions
 - Exploit existing validated numerical models of HEMJ

SCO₂ SIMULATIONS

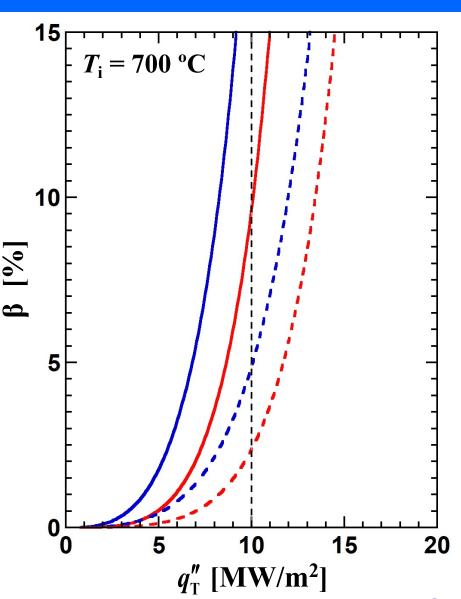
Numerical model of 60° wedge of HEMJ

- Commercial CFD software (FLUENT)
 - Unstructured hexahedral mesh with enhanced wall functions: 6.2M elements
 - Standard *k*-ε turbulence model
 - Specify q'', \dot{m} , T_i , p_o ; adiabatic walls (except top wall)
- Constrained by temperature limits on materials
 - For sCO₂, much higher mass flow rate $\dot{m}_{\rm C} = 59$ g/s ($Re = 2 \times 10^5$) to match cooled surface
 - temperatures $T_{\rm c}$ to those
 - for He at $Re_p = 2.2 \times 10^4$
 - Higher HTC with He


SCO₂ Performance Curves

• Simulation results at $p_0 = 10$ MPa

- $Nu = 0.00626Re^{0.837}\kappa^{0.19}$ ($\kappa = k_s/k$ thermal conductivity ratio), vs. $Nu = 0.0377Re^{0.687}\kappa^{0.19}$ for He
- $K_{\rm L} \approx 1.84$, vs. 1.73 for He
- Estimate maximum incident heat flux on tile q_T'' removed at $T_i = 600 \, ^{\circ}\text{C}, p \approx 10 \, \text{MPa}$
 - Max. average pressure boundary temperature $T_s = 1100$ °C, 1200 °C
 - sCO₂ pumping power fraction $\beta = 5\%$, 10%, 15%


New performance curves

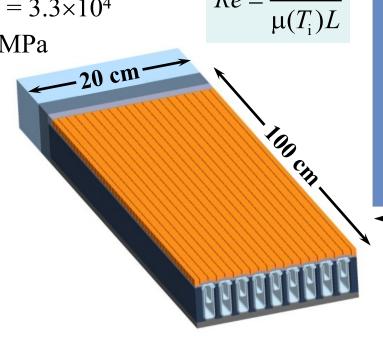
- For given T_s , determine $\beta(q_T'')$
 - Re increases as β and q_T'' increase

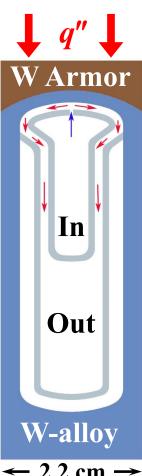
NEW PERFORMANCE CURVES

- Pumping power fraction β as a function of max. incident heat flux on tile q_T'' removed for constant $T_s = 1200 \, ^{\circ}\text{C}$
 - sCO₂ vs. He for p = 10 MPa (—) and 20 MPa (—) at $T_s = 1200$ °C
 - β higher for sCO₂ for given set of conditions ⇒ He has better thermofluids performance

SCO₂ VS. HE

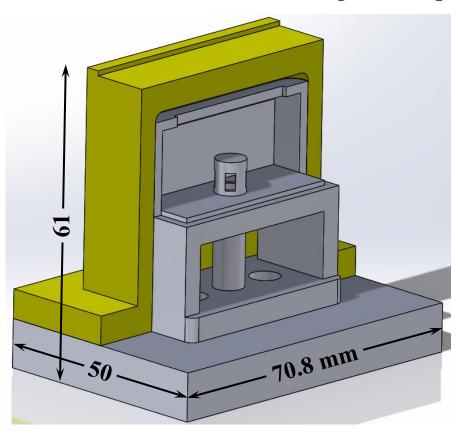
• Heat flux on tile q_T'' (and Re) at $p_0 = 10$ MPa

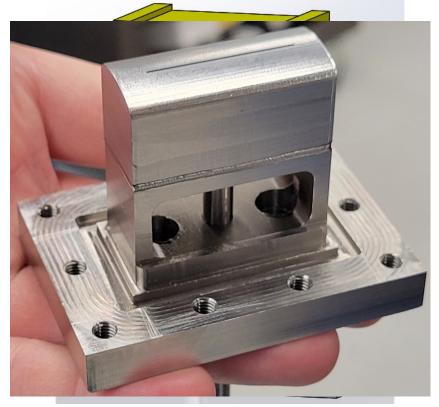

 $\beta = 5\%$ $\beta = 10\%$ $T_{\rm i} = 600 \, {}^{\circ}{\rm C}$ $T_{\rm s} = 1100 \, {\rm ^{\circ}C}$ $T_{\rm s} = 1200 \, {\rm ^{\circ}C}$ $T_{\rm s} = 1100 \, {\rm ^{\circ}C}$ $T_{\rm s} = 1200 \, {\rm ^{\circ}C}$ 10.8 MW/m^2 7.0 MW/m^2 8.8 MW/m^2 8.6 MW/m^2 sCO_2 (9.9×10^4) (1.1×10^5) (1.3×10^5) (1.4×10^5) 9.1 MW/m^2 $11.3 \text{ MW/m}^2 | 10.5 \text{ MW/m}^2 | 13.1 \text{ MW/m}^2$ He (2.0×10^4) (2.2×10^4) (2.7×10^4) (2.9×10^4)


$T_{\rm i} = 700 { m °C}$		$\beta = 5\%$		$\beta = 10\%$	
		$T_{\rm s} = 1100 {\rm ^{\circ}C}$	$T_{\rm s} = 1200~{\rm ^{\circ}C}$	$T_{\rm s} = 1100 {\rm ^{\circ}C}$	$T_{\rm s} = 1200~{\rm ^{\circ}C}$
	sCO ₂	5.2 MW/m ² (7.8×10 ⁴)	6.8 MW/m ² (8.5×10 ⁴)	6.3 MW/m ² (1.0×10 ⁵)	8.3 MW/m ² (1.1×10 ⁵)
	He	6.6 MW/m ² (1.6×10 ⁴)	8.7 MW/m ² (1.7×10 ⁴)	7.8 MW/m ² (2.1×10 ⁴)	10.1 MW/m ² (2.3×10 ⁴)

HE-COOLED FLAT PLATE

Helium-cooled flat plate (HCFP) divertor


- Cool large areas, but at lower $q'' < 8 \text{ MW/m}^2$
 - Hermsmeyer & Malang 02; Wang et al. 09
 - $O(10^2)$ plate modules required to cool 150 m² target plate, vs. $O(10^5)$ "fingers"
- Experimental studies of HCFP in small GT He loop
 - \dot{m} ≤ 10 g/s ⇒ "short" test section with $L \approx 3$ cm slot to achieve prototypical $Re = 3.3 \times 10^4$
 - First studies with He at $p \approx 10$ MPa
 - Heat fluxes $q'' < 2 \text{ MW/m}^2$ from electric cartridge heaters
 - Inlet temperatures T_i ≤ 100 °C
 - Experiments complemented by numerical simulations at prototypical conditions



HCFP TEST SECTION

- Fabricating "short" HCFP test section
 - Slot: width W = 0.5 mm (width) × length L = 29.8 mm
 - Stainless 316 inner cartridge + Ampcoloy 944 (Cu-Ni) outer shell

FUTURE WORK

Next steps

- Reexamine performance curves
 - Base on maximum (*vs.* average) pressure boundary temperature imposed by material limits
 - Add limits imposed by maximum thermal stresses
- Helium-cooled flat plate (HCFP) experiments
 - Develop Nu and K_L correlations and performance curves based on experimental data + numerical simulations at prototypical conditions
- Numerical analysis: integrate multiple divertor units with first wall
 - "Tile" outboard side of first wall sector model with individual T-tube units
 - Nonuniform heat flux distribution: curve-fit to simulations by T. D. Rognlien
 - Variations in He mass flow rates to each unit